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A triangular mesh finite difference code designed to study time-dependent magnetic 
diffusion and eddy current problems is described. TRIDIF is an extension of an existing 
widely used steady-state magnet design code entitled PANDIRA. The modifications required 
for the standard PANDIRA difference equations are presented. Sample results include 
magnetic field distributions in ion diodes and sources used for particle beam fusion 
applications. 

I. INTRODUCTION 

The design of conventional dc magnets for plasma physics or high-energy 
accelerator experiments has relied on large numerical codes which compute the 
magnetostatic fields produced by specified coil and magnetic material distributions. 
The more advanced of these have included a capability for treating curved or 
irregular boundaries [ 11, variable permeability, and three-dimensional field 
distributions [2]. Many recent magnet applications require pulsed fields in which 
metals of high electrical conductivity are used to shape fields. One example is the 
intense light ion diode experiments [3,4] being carried out to determine the feasibility 
of inertial confinement fusion. Another application is in the development of electron- 
beam pumped gas lasers [5] wherein (for certain designs) pulsed solenoidal guide 
fields for the electrons must diffuse around massive metal drift tube supports. Smooth 
field profiles are required for uniform excitation of the lasing medium. These 
applications require numerical codes with most of the sophistication of the conven- 
tional magnet codes, plus the capability for including the time-dependent diffusion of 
the magnetic flux and the eddy currents in the surrounding media. We describe here a 
triangular mesh diffusion code called TRIDIF which attempts to provide such a tool. 

TRIDIF is basically a modification to include time-dependence of an existing static 
magnet design code entitled PANDIRA. PANDIRA is a widely used triangular mesh 
finite difference code which solves a Poisson equation for the magnetic vector 
potential by means of a direct matrix inversion. SUPERFISH, a version of the code 
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for studying the mathematically similar problem of rf cavity excitation, has been 
discussed by Halbach and Holsinger [6]. PANDIRA is a direct descendent of the 
original TRIM code published by Winslow [l] in 1966 and thus reflects considerable 
development and refinement by the high-energy accelerator magnet design 
community. An intermediate version of the code (called POISSON), also in wide use, 
employed successive overrelaxation (SOR) to solve the field equation. 

Winslow’s original paper [l] used a time-dependent diffusion equation to develop 
the difference equations for the static field class of problems. Despite this, all of the 
applications in Ref. [I] and all of the subsequent publications using the various 
evolutionary versions of the code were restricted to static field problems. Halbach [7] 
published an interesting paper on eddy-current effects in accelerator magnets which 
used a number of simplifying assumptions to show qualitative effects, but again used 
the static version of the code. The present work describes a method for converting 
PANDIRA into a time-dependent code for magnetic diffusion and eddy current 
calculations. 

The PANDIRA code and its predecessors provide a very attractive basic module. 
The triangular mesh gives an excellent definition of curved and irregular surfaces. 
Fine zoning can be added easily where good resolution is required. An automatic 
mesh generator greatly reduces the difficulty of coping with the triangular mesh. The 
user need only specify the zoning along the exterior boundary and selected interior 
interfaces; the mesh generator [I] then solves a Laplace equation for the interior 
mesh point locations. 

The early versions of the code, such as TRIM and POISSON, relied on an 
accelerated SOR iterative method. We have found that for time-dependent problems, 
where many hundreds of time-steps might be required, the direct matrix solver of the 
later versions of the code [6] provides the speed and stability required. In early 
studies of the present work which used meshes of greatly varying density in both 
coordinates, convergence using the SOR version was frequently slow and sometimes 
not achieved at all. The direct solver, by contrast, always gives an exact solution to 
the difference equation with a speed which is independent of the mesh distribution. 

Other approaches to solving time-dependent field diffusion problems have been 
based on an integral equation method [8-121 in which the conductors are modeled by 
triangular finite elements. The field at any point is related to the distributed eddy 
currents by means of an inductance matrix whose elements involve integrations over 
the triangular cross sections. Advantages of this method are that vacuum regions 
need not be discretized and that no external boundary conditions are required. A 
disadvantage is that the inductance matrix is non-sparse, so that only a limited 
number of elements can be used in practical problems. 

In Section II, the modifications to the difference equations are presented and the 
new structure for time-dependent problems is discussed. Section III presents results 
for sample problems. This work is summarized in Section IV. 
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II. METHOD OF SOLUTION 

The usual equation which describes the diffusion of the magnetic vector potential 
a, where the magnetic field & = V x a, is given by 

where J, is a source current density produced within the magnet coils, ,u,, is the 
permeability of free space and c is the electrical conductivity. For the present 
derivation and applications, all materials are assumed to have a simple constant free 
space permeability; the extension to magnetic materials appears fairly 
straightforward, but no problems have thus far been attempted. In vacuum regions 
where CJ = 0, Eq. (2.1) is seen to reduce to the usual static equation, 

vxvxa=&Js. (2.2) 

For azimuthally symmetric problems in cylindrical coordinates with j, = J,,& the 
magnetic stream function v/ = rA, is generally used, and Eq. (2.1) becomes 

(2.3) 

the magnetic field components are given by 

B =?-av/ 
* rar 

and I B =_-!-ay/ 
r aZ' 

The mesh chosen by Winslow [ 1 ] uses exactly six nearest neighbors, as shown in 
Fig. 1. There is no restriction required on the shape of the triangles. Equation (2.3) is 
differenced as 

Gj(iy;+' - vi") 
At i= 1 
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2 
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FIG. 1. Basic module of triangular mesh. 
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where the superscript n refers to the time differencing and the summation on the 
right-hand side is taken only over the six nearest neighbors. The weights Wi are 
coupling coefficients which depend only on the geometry of the triangles. The term 
J’jn+‘= &o/3) Cf’=t J~~:y2Ai+~/2, where Ai+,/, is the area of the triangles, is propor- 
tional to the total source current contained within the mesh volume centered at point 
j. This represents the coil source current assumed to be specified for all time as input. 
The remaining quantity Gj = l/3 Cj (,~,,a~+ ,,*/rj) Ai+ ,,2 is proportional to the elec- 
trical conductance at the mesh location. For this treatment, it is assumed that u, the 
electrical conductivity, is an arbitrary function of space but is independent of time. 
As seen from Eq. (2.4), the equation is time differenced fully implicitly, with the 
spatial differencing centered at t”+ I. This has the advantage of good stability and, 
more importantly, requires fewer modifications than a time-centered differencing. The 
penalty paid, however, is a time differencing which is accurate in At to first, rather 
than second, order. 

Equation (2.4) can be rewritten as 

y/y+’ = Ci Will’” + So” + yl,“GjlAt 
xi Wi + GilAt ’ (2.5) 

(If G = 0, this reduces identically to the static case difference equation of Winslow.) 
At each time step Eq. (2.5) is solved using the direct matrix method for the new I,$“. 
The only changes required to the existing PANDIRA program are to have stored the 
I+$ from the preceding time step and the Gj, which need to be computed and stored 
only once just after the mesh generation section, since these coefficients are time- 
independent. The present code structure already exists to sum the J,, over the 
triangles to compute Sj so that only slight additions are required to also obtain the Gj 
over the whole mesh. For the examples to be presented, the time step was limited to 
the value used for most explicit calculations, namely, At ‘v 0.4 ,u,,oA2, where A is the 
smallest Ar or AZ found in metallic regions. More recent computations have used a 
variable time-step based on limiting the maximum change of any I,U~ to a few percent 
per time step. Some care must be exercised with this type of time step control for 
applications which require high accuracy of small magnetic field components. since 
some accuracy will be lost in performing the required numerical differentiation of the 
ty, values. 

FIG. 2. Portion of logical mesh used to define problem. The mesh generator converts this to an 
optimized mesh of variable shape and density. 
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PANDIRA uses a logical mesh to identify each mesh point with a label K and L, 
shown in Fig. 2. (In this notation the vJ’ in the preceding equations become I&~, 
ST” becomes SE,’ I, etc.) The mesh generator produces a topologically equivalent 
physical mesh, but one in which all boundaries are defined by mesh lines. With this 
indexing, Eq. (2.5) can be rewritten as [6] 

where K, is the maximum value of K and L, is the maximum value of L. 
The matrix A on the left-hand side of Eq. (2.6) is a block tridiagonal matrix as 

shown; each block is itself sparse with only three nonzero elements per row. Each 
element of YL is a vector with components ~12 ‘, for K = 1 to K,. The elements of 
the right-hand side are vectors with elements SIi i + I& GJAt, for K = 1 to K,, 
i.e., the standard PANDIRA source array modified by the addition of one of the 
extra terms shown in Eq. (2.5); the only other modification is made to the diagonal 
matrices aii, where the central elements (Ci Wi)LK become (xi Wi $ Gj/At)LK. The 
Gaussian block elimination and back substitution for the solution then takes place as 
described in Ref. [6]. 

III. SAMPLE APPLICATIONS 

TRIDIF was initially applied to a series of test problems with variations in one 
dimension only for which analytic or previous numerical results were available. These 
included 1-D Cartesian or cylindrical field diffusion in homogeneous media and the 
diffusion of infinite length cylindrical solenoid fields into a cylindrical metal annulus. 
Results for both Neumann and Dirichlet boundary conditions were obtained satisfac- 
torily. 

The first two-dimensional case studied was the field configuration for an intense 
pulsed cylindrical ion diode [3] in which a field transverse to the diode electrodes is 
used to inhibit the electron current. These fields are established over a time scale of 
many microseconds prior to initiation of the high-voltage pulse (-50 nsec) which 
accelerates the ions. The field is produced by two coils, as shown in Fig. 3. The skin 
depth in the aluminum anode is a few millimeters so that the field approximately 
follows the contour of the surface, which is shaped to focus the ion beam to a spot on 
the axis. Field diffusion into the anode is undesirable, since the ions will be emitted 
with a significant canonical angular momentum which will reduce the focusability of 
the diode. To reduce the flux diffusion, the current coils are driven first with a slow 
low-amplitude negative pulse (one-quarter of a sinusoid, quarter period ~1 msec) 
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FIG. 3. Schematic configuration of pulsed cylindrical ion diode used for particle beam fusion 
experiments. The field coils are used to prevent direct electron flow from the cathode to the anode. 
Typical parameters are an anode radius of 5-15 cm, voltage of l-2 MV, power of 0.1-1.0 TW, and a 
beam pulse length of 50 nsec. 
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FIG. 4. Diode configuration for studying effect of anode curvature. Electrons from the cathode 
blades are forced to follow magnetic field lines, forming a virtual cathode near the central portion of the 
anode (z = 0). Ions are emitted at the anode and accelerated radially inward to a central target. The 
computed field lines at the peak of the initial slow current pulse are shown. 
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FIG. 7. Configuration for the Pulselac linear accelerator problem. An annular beam of ions is 
extracted from the plasma gun source region by a voltage applied to the cathode. The magnetic field is 
used to control the electron flow and to focus the ions. 
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FIG. 8. Complete computational mesh used for the Pulselac field diffusion solution. 
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ANODE 

. 

FIG. 9. Magnetic field distribution at the peak of the current pulse. 

followed by a fast high-amplitude positive pulse. The net effect is to greatly reduce 
the trapped flux when the ion beam is formed. 

Figure 4 shows the computed field lines at peak curent in the TRIDIF calculation 
of the initial slow reverse field distribution. An expanded view of the computational 
mesh near the anode, which for this early study was of uniform density, is shown in 
Fig. 5. The excellent resolution of the surface curvature is evident. The stream 
function (field lines) in the anode at the time of peak current are shown in Fig. 6, 
which shows the same spatial region as Fig. 5. Figures 4 and 6 show the field lines in 
different regions of the mesh at the same point in time. About 50 time steps were 
required for this solution. 

A more challenging application of the code was the study of a new ion injector 
configuration, shown in Fig. 7, for Pulselac [4], a multistage linear ion accelerator for 
inertial confinement fusion. The basic physics is similar to that of the external field 
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ANODE 

FIG. 10. Expanded view of the field lines at the emission region of the anode. 

control diode of Fig. 3; in this case pulsed magnetic fields are used to inhibit electron 
flow, to enhance the ion emission rate and to focus the resultant beam. A separate 
plasma source is used to provide a supply of ions. The exact shape of the field lines 
at the anode is crucial for controlling electron loss and the initial beam emittance. 
The axis of symmetry in Fig. 7 is at the bottom of the figure. The ions which are to 
be injected into the accelerator are thus in the form of an annular beam. The anode 
material was again aluminum and the right-hand boundary was modeled as a 
perfectly conducting plane. Figure 8 shows the complete computational mesh. The 
streamlines at the time of peak current (t N 0.07 msec) are shown in Fig. 9. Figure 10 
shows the field lines near the ion source with greater resolution. The flexibility of the 
code allowed the study of a variety of anode shapes to optimize the fields for 
controlling the electrons. 

The most recent application of the code was the study of field diffusion around 
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supports in an electron-beam pumped gas laser [5]. Smooth field profiles are desired 
to obtain uniform excitation of the lasing medium. Eddy currents induced in the 
supports lead to potentially damaging field perturbations. To test the predictions of 
the code, two coils were arranged in the Helmholtz configuration to produce a pulsed 
cylindrical field volume. Two annular stainless steel slugs were inserted to represent 
the laser cavity support rings. The spatial and temporal behavior of the magnetic 
fields were measured with Rogowski loops and compared with the computed fields. 
The fields compared to better than 10% for all positions and times for which data 
was taken. The details of this work are available in Ref. [ 131. 

IV. SUMMARY 

A code for computing pulsed magnetic field diffusion problems has been 
constructed by making modest modifications to the existing PANDIRA code, which 
was written for static problems. The triangular mesh and automatic zoner provide 
great geometric flexibility while the direct matrix solver provides the speed required 
for practical time-dependent problems. The speed of the solver per time step was 
found to be equivalent to that claimed in Ref. [6], namely, T, = T, N*E, where T, is 
the CPU time, N is the total number of logical mesh points, and E is the smaller of 
K,/L, or L, /K,. For CDC-7600, T, N 0.75 ,usec. A significant increase in speed 
should be possible by storing some of the time-invariant matrices. This type of code 
should also be of use for many other physical problems, such as thermal diffusion. 
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